7,594 research outputs found

    The X-ray emission of magnetic cataclysmic variables in the XMM-Newton era

    Full text link
    We review the X-ray spectral properties of magnetic cataclysmic binaries derived from observations obtained during the last decade with the large X-ray observatories XMM-Newton, Chandra and Suzaku. We focus on the signatures of the different accretion modes which are predicted according to the values of the main physical parameters (magnetic field, local accretion rate and white dwarf mass). The observed large diversity of spectral behaviors indicates a wide range of parameter values in both intermediate polars and polars, in line with a possible evolutionary link between both classes.Comment: To appear in the Proceedings of "The Golden Age of Cataclysmic Variables (Palermo 2011)", in Mem. Soc. Astron. It. (7 pages, 3 figures

    A slip model for micro/nano gas flows induced by body forces

    Full text link
    A slip model for gas flows in micro/nano-channels induced by external body forces is derived based on Maxwell's collision theory between gas molecules and the wall. The model modifies the relationship between slip velocity and velocity gradient at the walls by introducing a new parameter in addition to the classic Tangential Momentum Accommodation Coefficient. Three-dimensional Molecular Dynamics simulations of helium gas flows under uniform body force field between copper flat walls with different channel height are used to validate the model and to determine this new parameter

    Investigation of collective radial expansion and stopping in heavy ion collisions at Fermi energies

    Get PDF
    We present an analysis of multifragmentation events observed in central Xe+Sn reactions at Fermi energies. Performing a comparison between the predictions of the Stochastic Mean Field (SMF) transport model and experimental data, we investigate the impact of the compression-expansion dynamics on the properties of the final reaction products. We show that the amount of radial collective expansion, which characterizes the dynamical stage of the reaction, influences directly the onset of multifragmentation and the kinematic properties of multifragmentation events. For the same set of events we also undertake a shape analysis in momentum space, looking at the degree of stopping reached in the collision, as proposed in recent experimental studies. We show that full stopping is achieved for the most central collisions at Fermi energies. However, considering the same central event selection as in the experimental data, we observe a similar behavior of the stopping power with the beam energy, which can be associated with a change of the fragmentation mechanism, from statistical to prompt fragment emission.Comment: 15 page

    Improving the low-lying spectrum of the overlap kernel

    Get PDF
    The action of the overlap-Dirac operator on a vector is typically implemented in directly through a multi-shift conjugate gradient solver. The compute-time this takes to evaluate depends upon the condition number Îş\kappa of the matrix that is used as the overlap kernel. We examine the low-lying spectra of various candidate kernels in an effort to optimise Îş\kappa, thereby speeding up the overlap evaluation.Comment: 5 pages, 8 figure

    Infinite Volume and Continuum Limits of the Landau-Gauge Gluon Propagator

    Get PDF
    We extend a previous improved action study of the Landau gauge gluon propagator, by using a variety of lattices with spacings from a=0.17a = 0.17 to 0.41 fm, to more fully explore finite volume and discretization effects. We also extend a previously used technique for minimizing lattice artifacts, the appropriate choice of momentum variable or ``kinematic correction'', by considering it more generally as a ``tree-level correction''. We demonstrate that by using tree-level correction, determined by the tree-level behavior of the action being considered, it is possible to obtain scaling behavior over a very wide range of momenta and lattice spacings. This makes it possible to explore the infinite volume and continuum limits of the Landau-gauge gluon propagator.Comment: 24 pages RevTex, 18 figures; Responses to referee comments, minor change

    Scaling Behavior of the Landau Gauge Overlap Quark Propagator

    Get PDF
    The properties of the momentum space quark propagator in Landau gauge are examined for the overlap quark action in quenched lattice QCD. Numerical calculations are done on three lattices with different lattice spacings and similar physical volumes to explore the approach of the quark propagator towards the continuum limit. We have calculated the nonperturbative momentum-dependent wavefunction renormalization function Z(p2)Z(p^2) and the nonperturbative mass function M(p2)M(p^2) for a variety of bare quark masses and extrapolate to the chiral limit. We find the behavior of Z(p2)Z(p^2) and M(p2)M(p^2) are in good agreement for the two finer lattices in the chiral limit. The quark condensate is also calculated.Comment: 3 pages, Lattice2003(Chiral fermions

    Improved Smoothing Algorithms for Lattice Gauge Theory

    Get PDF
    The relative smoothing rates of various gauge field smoothing algorithms are investigated on O(a2){\cal O}(a^2)-improved \suthree Yang--Mills gauge field configurations. In particular, an O(a2){\cal O}(a^2)-improved version of APE smearing is motivated by considerations of smeared link projection and cooling. The extent to which the established benefits of improved cooling carry over to improved smearing is critically examined. We consider representative gauge field configurations generated with an O(a2){\cal O}(a^2)-improved gauge field action on \1 lattices at β=4.38\beta=4.38 and \2 lattices at β=5.00\beta=5.00 having lattice spacings of 0.165(2) fm and 0.077(1) fm respectively. While the merits of improved algorithms are clearly displayed for the coarse lattice spacing, the fine lattice results put the various algorithms on a more equal footing and allow a quantitative calibration of the smoothing rates for the various algorithms. We find the relative rate of variation in the action may be succinctly described in terms of simple calibration formulae which accurately describe the relative smoothness of the gauge field configurations at a microscopic level

    Quark propagator in a covariant gauge

    Get PDF
    Using mean--field improved gauge field configurations, we compare the results obtained for the quark propagator from Wilson fermions and Overlap fermions on a \3 lattice at a spacing of a=0.125(2)a=0.125(2) fm.Comment: 5 pages, 8 figures, talk given by F.D.R. Bonnet at LHP 2001 workshop, Cairns, Australi

    The method of Gaussian weighted trajectories. V. On the 1GB procedure for polyatomic processes

    Full text link
    In recent years, many chemical reactions have been studied by means of the quasi-classical trajectory (QCT) method within the Gaussian binning (GB) procedure. The latter consists in "quantizing" the final vibrational actions in Bohr spirit by putting strong emphasis on the trajectories reaching the products with vibrational actions close to integer values. A major drawback of this procedure is that if N is the number of product vibrational modes, the amount of trajectories necessary to converge the calculations is ~ 10^N larger than with the standard QCT method. Applying it to polyatomic processes is thus problematic. In a recent paper, however, Czako and Bowman propose to quantize the total vibrational energy instead of the vibrational actions [G. Czako and J. M. Bowman, J. Chem. Phys., 131, 244302 (2009)], a procedure called 1GB here. The calculations are then only ~ 10 times more time-consuming than with the standard QCT method, allowing thereby for considerable numerical saving. In this paper, we propose some theoretical arguments supporting the 1GB procedure and check its validity on model test cases as well as the prototype four-atom reaction OH+D_2 -> HOD+D
    • …
    corecore